Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Swiss Medical Weekly ; 152:10S, 2022.
Article in English | EMBASE | ID: covidwho-2040808

ABSTRACT

Progress in the fight against COVID-19 is jeopardized by the emergence of SARS-CoV-2 variants that diminish or abolish the efficacy of vaccines and antiviral monoclonal antibodies. Novel immune therapies are therefore needed, that are broadly effective against present and future coronavirus threats. In principle, this could be achieved by focusing on portions of the virus that are both functionally relevant and averse to change. The Subdomain 1 (SD1) of SARS-CoV-2 Spike protein is adjacent to the RBD and its sequence is conserved across SARS-CoV-2 variants, except for substitutions A570D in Alpha (B.1.1.7) and T547K in Omicron BA.1 (B.1.1.529). In order to specifically identify and study human antibodies targeting SD1, we designed a flow cytometry-based strategy that combines negative selection of B cells binding to the Receptor Binding Domain (RBD) with positive selection of those binding to SD1-RBD fusion protein. Among the 15 produced human monoclonal antibodies, 6 are SD1-specific. 3 of them cross-react with SD1-RBDs corresponding to all six variants of concern and 2 are neutralizing SARS-CoV-2 pseudovirus. Antibody sd1.040 also neutralizes Delta, Omicron BA.1 and Omicron BA.2 pseudovirus, synergizes with an antibody to the RBD for neutralization, and protects mice when present in a bispecific antibody. Thus, naturally occurring antibodies can neutralize SARS-CoV-2 variants by binding to SD1 and can act synergistically against SARS-CoV-2 in preclinical models.

2.
20th IEEE Sensors, SENSORS 2021 ; 2021-October, 2021.
Article in English | Scopus | ID: covidwho-1672878

ABSTRACT

The current COVID-19 pandemic has become a worldwide problem with more than 169 million people infected by May 2021. Here we demonstrate a unique technology, based on the quartz crystal microbalance method, for the rapid detection of SARS-CoV-2. This biosensor fulfils all of the many requirements for the rapid detection of SARS-CoV-2 in complex samples. This is achieved by a tailored antifouling surface post-modified with antibodies against SARS-CoV-2 nucleocapsid protein (N). The A-QCM profits from absence of sample pre-treatment and utilizes the natural properties of N protein, which forms complexes with vRNA. Thanks to this, the clinically relevant LOD of 6.7×103 PFU/mL was reached using one-step detection assay. The A-QCM biosensor was also validated with clinical samples (i.e. nasopharyngeal swabs) with full agreement with qRT-PCR. The A-QCM biosensor was also utilized for the presence of SARS-CoV-2 in surface swabs in means of public transport. © 2021 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL